Exploiting Decomposability Using Recombination in Genetic Algorithms: An Exploratory Discussion
نویسنده
چکیده
On certain classes of problems, recombination is more effective if the parents that are being recombined share common subsolutions. These common subsolutions can be used to decompose the recombination space into linearly independent subproblems. If a problem can be decomposed into k subproblems, a single greedy recombination can select the best of 2 possible offspring. The idea of exploiting decomposability works well for the Traveling Salesman Problem, and appears to be applicable to other problems such as Graph Coloring. For Search Based Software Engineering, these ideas might be useful, for example, when applying Genetic Programming to fix software bugs in large programs. Another way in which we might achieve decomposability is by exploiting program modularity and reoccurring program patterns.
منابع مشابه
O-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملA Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders
Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...
متن کاملStatic Task Allocation in Distributed Systems Using Parallel Genetic Algorithm
Over the past two decades, PC speeds have increased from a few instructions per second to several million instructions per second. The tremendous speed of today's networks as well as the increasing need for high-performance systems has made researchers interested in parallel and distributed computing. The rapid growth of distributed systems has led to a variety of problems. Task allocation is a...
متن کاملSolving random inverse heat conduction problems using PSO and genetic algorithms
The main purpose of this paper is to solve an inverse random differential equation problem using evolutionary algorithms. Particle Swarm Algorithm and Genetic Algorithm are two algorithms that are used in this paper. In this paper, we solve the inverse problem by solving the inverse random differential equation using Crank-Nicholson's method. Then, using the particle swarm optimization algorith...
متن کاملOn the sampling property of real-parameter crossover
In solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main focus of the research is the recombination operator, which use probability distributions calculated from the parent solutions. Such operator is intrinsically a non-parametric modeler and estimator, wh...
متن کامل